Unit IV

Numerical Integration and Differentiation
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Numerical integration and differentiation

* quadrature

— classical formulas for equally spaced nodes

— improper integrals

— Gaussian quadrature and orthogonal polynomials
« differentiation of functions

— finite difference methods

— smoothing methods for noisy data
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Numerical integration

construct a polynomial interpolation for the function f(x)
this provides an easy integration to approximate the

definite integral ,

flx)dx
this problem is actually a special case of integration
of an ordinary differential equation
dy
o =)
— i.e. find y(b) subject to the boundary condition y(a) = 0

direct methods for numerical integration of
functions are called quadrature
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Plan of attack

» tointegrate f(x) fromatob ...

+ add up values of the integrand at selected abscissas
within the range of integration

» goal: obtain an accurate value of the integral with the
smallest number of evaluations of the integrand

+ as with polynomial interpolation we can choose
methods of increasingly high order but ....

... higher order does NOT necessarily imply higher
precision
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How?

* n abscissa points (nodes), i.e. steps along the x-axis,

identified within the integration interval (a,b)
= XqpeensXp
— X, and x, need not coincide with a and/or b

« find low order piecewise polynomial interpolants for
f(x) on sub-intervals defined by the nodes

» each method has a basic rule (i.e. formula) and ...
— from integration of the piecewise polynomial segment

* ...acomposite rule

— from combining the piecewise integrated polynomial
interpolants according to some scheme
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Truncation error

* can be evaluated by comparing numerical vs analytic
solutions for test functions

* in general can be expressed as a function of the
number of nodes
— more nodes = less truncation error...
— ... but not always

» adaptive methods
— estimates of the truncation error provide feedback on the fly

— the number of nodes can be adjusted at each step to meet
user-specified accuracy
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Options for node spacing

* Newton-Cotes methods
— family of methods based on equally-spaced nodes
— historically significant
— in practice mostly useless nowadays
— composite versions can be more useful
* Gaussian quadrature

— based on irregularly-spaced nodes defined as the zeros of
special orthogonal sets of polynomials

different families of polynomials lead to different basic rules
more theoretically complex and difficult

complicated programming

— much reduced truncation error
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Newton-Cotes methods

Xpl X

n nodes x,,4=X, + ih, i=1, ...,n-1 in the integration interval (a,b)
h is called the step size

f has known values at the nodes f; = f(x;)

the method is closed if f(a) and f(b) are used as nodes

when f is not well-behaved at the endpoints

open methods for which f(a) and f(b) are not used are
convenient
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Trapezoidal step

Ax) -

|
\ h=x,-x, }
- £ T
|
}
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Trapezoidal rule
/ 2 fla)de =h {éh + l]fg} + O(h?'_f”)

a piecewise linear interpolation on each sub-interval (x;,X;,1)

integrate the first order Lagrange polynomial interpolant to get
the basic rule

error analysis shows error is dependent on h? times some
(unknown) value of f" inside the interval

two point (x; and x,) formula

exact for any polynomial function up to degree 1, i.e. linear
polynomial
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Simpson step
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Simpson’s rule
fﬁ f(x)de =h Hh + %fg + %fg + O(R® 114y

a piecewise quadratic interpolation on each sub-interval (x;,x.,,)

integrate the 2nd order Lagrange polynomial interpolant to find
the basic rule

sub-intervals used in pairs so requires an odd number of nodes
a three point formula exact for polynomials up to degree 2

error is O(h%) instead of anticipated O(h*), due to a lucky
cancellation from symmetry

note the step size 2h = sum of the weights (coefficients)
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Simpson’s 3/8 rule

/“f(l'){h'fh Ef +2f +2{ +2f + O
L TR TR TR T R /

+ a piecewise cubic interpolation on each sub-interval (x;,X.3)

» contrast this with what we did in constructing the cubic spline
interpolation, viz. fit cubic through pairs of points

+ the basic rule is calculated by integrating the 3nd order
Lagrange polynomial interpolants

» extending requires n = 3k+1 nodes, since the sub-intervals are
used in threes

+ a four point formula exact for polynomials up to degree 3 (no
luck this time)

» note the step size 3h = sum of the weights
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Bode’s rule

S 14 G4 24 G4 11 Tt
f fla)de =h {—_f1+—'_f2+—_fa+—J_f4+—_f5 + O(h7 1)
o1 45 45 15 15

15

* a piecewise 4th order polynomial interpolation on each sub-
interval (X;,X;,4)

» the basic rule is calculated by integrating the 4th order Lagrange
polynomial interpolants

* requires n = 4k+1 nodes, since the sub-intervals are used in
fours

+ afive point formula exact for polynomials up to degree 5 (lucky
cancellation again this time)

» note the step size 4h = sum of the weights
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Composite (closed) trapezoidal rule

fnf(l')dl‘:h {éf1+f2+f3++fn—l+éfﬂ

« apply the trapezoidal rule n-1 times to the sub-intervals

« erroris O[f".(b-a)%/n?]

» usually we want to adjust n and keep (b-a) fixed, e.g. take twice
as many steps and see how the error is reduced

» so we write error is O(1/n2) and ignore the other parts

« this equation is the most important in the series, used as the
basis for subsequent more sophisticated methods
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Example: Composite trapezoidal rule

2dr b )
: T:E[fl+2f2+2f3+"'+Q.fnfl+fn] O(n?)

+ for n =2 sub-intervals, h = (2-1)/2 = 1/2 and you get
I, = (1/4) [1/1 + 2/1.5 + 1/2] = 17/24 = 0.7083
» forn=22=4 sub-intervals h = 1/4 and you get
1, = (1/8) [f(1) + 2f(5/4) + 2f(3/2) + 2f(7/4) + f(2)]
=(1/8) [1 + 8/5 + 4/3 + 8/7 + 1/2] = 0.6970
» forn =23 =8 sub-intervals h = 1/16 and you get
I3 = (1/16) [f(1) + 2f(9/8) + 2f(5/4) + 2f(11/8)+ 2f(3/2)
+ 2f(13/8) + 2f(7/4) + 2f(15/8) + f(2)] = 0.6941...
+ the exact value of the integral is In(2) = 0.693147...
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Composite (closed) Simpson’s rule

Tn 1 4 2 4 2 4
/ flx)dx =h {gfl + §f2 + §f3 + §f4+ ot 5fn—2+ §fn—1 + Fn

ri

» 4th order method, i.e. error = O(1/n*) as for Simpson’s rule
» derived by applying Simpson’s rule to sub-intervals sequentially

* requires an odd number of nodes, so even number of sub-
intervals

+ it's also possible to use over-lapped Simpson steps, but requires
special care at the ends....
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Composite (closed) third order method

.
5 5

RN 5 13 13
/“ Jlr)de =h |:Ef1 Tt Bt fatt fa T hot gl
« error = O(1/n3)
« this is derived by averaging two shifted applications of the
composite Simpson’s rule over (a,b)
+ asingle trapezoidal step is included to fill in opposite ends

+ the two trapezoidal steps reduce the order to n?instead of the
expected n*
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Example: Composite O(n3) rule

o 5 13 13 5
'L flx)dr = h {E,ﬁ + E,fz +fatfat A faot E‘f”’l + Efn:|

for n = 2 sub-intervals, h = (2-1)/2 = 1/2 and you get
1, = (1/2) [(5/12)(1/1) + (13/12)(1/1.5) + (5/12)(1/2)]
= 0.6943
for n = 4 sub-intervals h = 1/4 and you get
I, = (1/4) [(5/12)f(1) + (13/12)f(5/4) + f(3/2) + (13/112)f(7/4) + 5/12)f(2)]
= (1/4) [(5/12)(1/1) + (13/12)(1/1.25) + 1/1.5 + (13/12)(1/1.75)
+(5/12)(1/2)] = 0.6943
the exact value of the integral is In(2) = 0.693147...

compare convergence of this third order method to that of the
second order trapezoidal rule
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Improper integrals

+ one of the following may apply....

— the integrand has a finite limit at either of the finite endpoints,
but cannot be evaluated (e.g. sin x/x at x=0)

— one of the limits is « or -«

— there is an integrable singularity at either limit (e.g. x 2 at
x=0)

— there is an integrable singularity at some known place inside
the interval of integration

— there is an integrable singularity at some unknown place
inside the interval of integration

» we need to be able to handle any of these cases in

numerical integration of functions

Unit IV - Integration and differentiation 20

1

Improper integrals

first four cases are resolvable with basic methods
something like the composite trapezoid rule is useful,
because....

to handle the improper aspects we need to use an
open formula
— neither f(a) nor f(b) need to be evaluated

composite midpoint method is an open alternative:

f ) f(@)de = hlfya + fop2 + frpp+ - + Faoaje + fuo12l +O(1/n?)

— cannot double the number of steps and retain past work, but
you can triple the steps
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Infinite limits

change variables to transform an infinite integration
interval to a finite one

example:

fb a |
fla)dey = f —f(—) dt ab =0
a 1y N

— works if b = « and a>0, or a = -~ and b<0

— if say b = = and a<0 split into two separate integrals

an clever integration routine can make the
transformation for you when one of the required limits
is ‘very large’
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Integrable singularities

a transformation can remove an integrable singularity
when f(a) or f(b) is infinite
example:
— an inverse square root singularity at a can be fixed by using
t=Vx-a .... 50 x = t2+a and dx = 2tdt

b vi—a
ff(.r)dr:/ fla+t)dt  (b>a)
a 0

at the lower limit we would have

b Vi—a

/ f[l:)dzzf 2ef(b—iHdt (b a)
a o

numerical methods cannot fix ill-posed problems with

integrals that are impossible
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Newton-Cotes formulas re-visited

b b
/f(;r):l.r'%f Pa_i(x)dr

P..1(x) is the Lagrange polynomial interpolation for
f(x) on the interval (a,b)

all Newton-Cotes formulas can be considered in the
following view:

fabpn—l(l‘)dl = f: Lz:l L'J(I)fj} d
12::1 uLbLj(I)dI} fi
i:wjfl

=t
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Weights and nodes
b n
/ flz)de ~ Z w; f(x5)
a et
* the xjare nodesa<x<b
* the w; are called weights

— obtained by integrating the jth Lagrange interpolating
polynomial for f(x) on (a,b):

b
wj=] Lj(x)dr
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Weights and nodes

* Newton-Cotes rule with n nodes cannot give
precision greater than O(n-1)
— exact for polynomials of degree n-1 or less

» we can improve this situation without increasing the
number of nodes ...

* ... by providing more degrees of freedom in the fit

» Gaussian quadrature chooses the nodes carefully to
have special properties with respect to f(x)
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Gaussian quadrature
b n
/ fla)dr =~ Z wj f(a;)
p =~

* both weights and nodes are freely chosen for best
precision
— twice as many degrees of freedom
— nodes will not be equally spaced in general
* how do we ...
— optimize the node positions?
and ...
— find the corresponding weights?
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Two versions of Gaussian quadrature

given function w(x) and integer n we want to find
weights w; and nodes x; so that the approximation

b n
f w(z)f(x)dr =Y wif(z;)
a pet
is exact if f(x) is a polynomial

if we write g(x) = w(x)f(x) and v, = w/w(x;) we get an
alternative form of the Gaussian quadra{ure formula

b n
f g(z)de mZt'jg(.rJ—)
a st
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The easy way to nodes and weights

lookup tables
— nodes and weights are available for given weight functions w(x)
and values of n
can be used without understanding the theory but ....
— the theory is important for its intrinsic value so you should be
aware of the basics
— custom-designed weight functions are sometimes needed to
solve a specific problem
— you have to know enough to know which version of the
Gaussian quadrature formula (slide 28) to use
compromise: we give some results and outline the
theoretical background (so dive in .... )
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Gaussian quadrature

* how exact can the approximate integral be with n nodes?

— to a polynomial of degree n-1 or less with Newton-Cotes
formulas

— to a polynomial of degree 2n-1 or less for movable nodes
» compared to using fixed nodes Gaussian quadrature
gives
— an order twice as large for the same number of function
evaluations

» that’'s a LOT of room to improve precision but .....
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Gaussian quadrature

.... higher order does not necessarily mean better

accuracy

— need a smooth function to benefit from Gaussian quadrature

— it should be well approximated by a polynomial

for craggy functions ... you do just a well or better with

the composite trapezoid rule

an additional benefit of Gaussian quadrature:

— the approximation is exact for functions which are products of
a given w(x) and a polynomial, not just plain polynomials

to understand the basis for all this we need to visit the

world of orthogonal polynomials .....
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Digression: Orthogonal functions

» recall .... the concept of inner product space from linear
algebra

 an inner product with weight function w(x) can be
defined in a function space:

b
(o) = [ W fwg(ode

« the result is a number, not a function, of course

» on the interval [a,b] two functions f and g are ....
— orthogonal if (flg) = 0 (and f = g)
— normalized if (f|fy = ||f||2 =1
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Digression: Orthogonal functions

an orthonormal set of functions is mutually orthogonal
and normalized (just like an orthonormal basis)
example: {1, x} are orthogonal on the interval [-1,1] with
either of the weight functions:

- w(x)=1

— w(x) = V1-x2

example: {cos kx}, {sin kx} k=1,...,n are orthogonal sets
of functions on [0,x]

the mononomials {1, x, x2,x3, ....} are NOT an orthogonal
set, but ....
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Digression: Orthogonal functions

* ... important sets of polynomials p;(x), j = 0,1,2,....
can be defined on an interval (a,b) so that
— there is exactly one polynomial of each degree
— they are mutually orthogonal with respect to a given weight

function w(x)

« after a heavy dose of linear algebra we can obtain
recursive definitions for these orthogonal
polynomials ....
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Digression: Orthogonal functions

poi(z) =0
polz) =1
pi1lr) = (z —aj)p;(a) — bipj_1lx)  §=0,1,2,...
_ {zpslpsy o1
Y ol T
(pilps) )
by = ——— =1,2,...
T {pialpioa
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Digression: Orthogonal functions

+ the polynomials are monic
— coefficient is one for the highest degree term xi
» they can be normalized in the usual way
- divide each p; by its 2-norm (pj|p; )2
» each polynomial p;(x) has j distinct (real) roots in the
interval (a,b)
— these j roots of pj(x) interlace with the j-1 roots of p,
— exactly one root of p; lies between any two adjacent roots of p;
root-interlacing is very handy for finding all roots of p;(x)
— find the one root of p,
— continually bracket the roots for each higher j
— apply something like Newton’s method to locate the roots

Unit IV - Integration and differentiation 36




Digression: Orthogonal functions

* but .... why would anyone want to find all the roots of an
orthogonal polynomial anyway?

* because the roots of orthogonal polynomials are the key
to Gaussian quadrature

read on &
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How to get the nodes?

in an n-point Gaussian quadrature on the interval (a,b)
with weight function w(x):
the nodes are chosen to be the n roots of
the orthogonal polynomial p;(x) with the same
weight function and interval
this is a fundamental theorem and the starting point for
myriad different pathways in the subject
— calculations tend to be quite complicated
once you have the nodes you need to calculate the
corresponding weights w;......
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How to get the weights?

* simplest approach: substitute each p;(x) for f(x) in the
integral approximation (slide 28)
— the result should be exact
— (witchcraft) slip a py(x) inside the integral without changing it
since py(x) = 1 (a constant)
— the thing evaluates to zero for j=1,2,... because all the other
polynomials are orthogonal to p,

» you get the system of equations
[Pw(a)pola)de
0

po(x1) poln) wy
p(x) - pilEn) wa 0
Pa1(x1) o+ pro1(Tn) n 6
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How to get the weights?

solve to get the weights {w,,..., w,}
it turns out that they give an integral approximation exact
for polynomials up to the next n-1 degree as well
so the quadrature formula is exact for polynomials up to
degree 2n-1 (as anticipated)
other ways to get the weights include .....

— use lookup tables for known weight functions

— study the theory in depth and develop the most well-known and

useful cases [an important study for engineers]

— use the integral formula (slide 25) with the Lagrange interpolating
polynomials for f(x)
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Taking stock

» three steps are used to develop a Gaussian quadrature
formula for a given w(x) ....

1. Generate the orthogonal polynomials {p, ..., p,}
- i.e. evaluate coefficients a and b; in the formulas on slide 39

2. Find the zeros of p,(x) .... the NODES

3. Calculate the associated W, .... the WEIGHTS

» for classical weight functions ....
— the orthogonal polynomials are known so the work is simplified
— but still somewhat involved

« for non-classical weight functions ....
— the non-trivial process above must be followed
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Legendre polynomials

the simplest case: w(x) = 1 and interval (-1,1)
the Legendre polynomials are generated by

G+ 1P =25+ Dby — jFi

the first few Legendre polynomials are:
Py(x) =1
Pi(x) =x
P,(x) = (3x2 - 1)/2
P4(x) = (5x3 - 3x)/2
P,(x) = (35x* - 30x2 + 3)/8
these lead to Gauss-Legendre quadrature.....
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2-point Gauss-Legendre quadrature

nodes are the zeros of P,(x)

— the solutions of 3x%-1 =0

— X, =-1N3and x, = 143
weights are obtained from the Lagrange interpolating
polynomial formula on slide 25

1 1
w = [ nwa w = / La(a)da
1 -1
1 1 _
= f R = / S
—1 L1 — X2 1Tz — T
1 1
_ f .r—l/\/SdI _ / I+]/\/3dr
1 —2/V3 1 2//3
V3 1 ! Js( 1 )
= —— (- —)d = —5 | T+ — | dr
L3 (-5)w (G
= 1 =1
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Example: 2-point Gauss-Legendre quadrature
1 1
/ fla)dr = / (3 4+ 2 42+ 1)de=8/3
—1 —1

2-point Gauss Legendre quadrature should give the
exact answer for this integral (cubic, 2n-1 = 3)

1
/ flo)dr = wif(er) +waflxs)
1

= 1f(=1/3)+ 1f(1/v3)
0.56353297 + 2.10313369
= 2.66666666

as expected the answer is exact to sig. figures given
consider a more involved example .....
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5-point Gauss-Legendre quadrature

nodes are the zeros of P5(x)

these can be found numerically, or by lookup tables:
0, +0.33998 10435 84856, +0.90617 663115 94053

ditto for the corresponding weights
0.56888 88888 88889, 0.47862 86704 99366,
0.23692 68850 56189

use the 5-point formula to estimate In 2 by evaluating

2 dr .
Td;r =n2-Inl=m2=0069314718
L

a problem here .... integration is over [1,2] so Gauss-
Legendre is not applicable directly
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Adjusting integration limits

to apply Gauss-Legendre quadrature over [a,b] not [-1,1]
define a new function using the transformation
z=(2x-(atb))/ (b -a)
x=a—>z=-1Tandx=b —z =1 as required
new function is g(z) = f(x) = f((b - a)z + (a + b)/2)
integral is converted to a standard [-1,1] integral of form
F(z) dz
nodes z; and weights w; obtained from tabulated values
are used in the expansion with F(z)
in the 5-point example we have:
z=(2x-(2+1))/(2-1)=2x-3
g(2)=2/(z+3)
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Example: 5-point Gauss-Legendre quadrature

applying the transformation gives

2 dr 192 g o
—dr = —— = —dz
. _12+32 _1z+3

soF(z) =1/ (z+3)
now apply the 5-point Gauss Legendre quadrature
formula, using the tabulated nodes and weights with F(z)

1
f1 F(2)dz = wiF(z1) + woF(22) + w3F(23) + waF(24) + wsF(z5)

IS U SIS S S S
121+3 2:2+3 3:3+3 424+3 325+3
= 0.69314712
the answer is accurate to 6 significant figures
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Another example

2 2
f e~ dr
0

f(x) = exp(-x2),a=0,b =2

transformation z = (2x - (2+0)) / (2-0) = x-1 or x = z+1
9(z) = f(x) = exp(-(z+1)?)

f(x)dx = g(z)dz, so F(z) = g(z) since dz = dx

apply 2-point Gauss-Legendre quadrature

1 ) 1
/ e gy = f F(z)d=
-1 -1

= 1F(z1) + 1F(z2)
¢ —(—0.5773503+1)% | —(0.5773503+1)

= 09195
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Laguerre polynomials

+ take w(x) = e* and interval [0,«]
» the Laguerre polynomials are generated by

Li(x) = (2] —x — 1)L 1) = (j —1)°L; ()

+ the first few Laguerre polynomials are:

Lofz) = 1

Li(r) = —o+1

Lofz) = 2% —dr+2

Lq() —23 4022 — 182 +6
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Gauss-Laguerre quadrature

n+1

fo Yot fa)dr = 3 wif ()

=1
use to evaluate integrals of the above type
nodes x; are the roots of the nth Laguerre polynomial
apply the Lagrange interpolation formula

n

H(-T*Ii)

i=0

f(n+l)(€)
(n+1)!

F@) = Llx)f(x) +
=0

— this is valid for some 0<E<«
— the error term R,, is as given [not derived here]
at this point the nodes x; have yet to be defined....
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Why does Gaussian quadrature work?

/:f(.r)d.r I~ /ﬂbpn,l(.r)d.r

» the Gauss-Legendre approximation is
— exact for polynomials of deg n-1 or less [for sure] but ....

— the error term above can also be made zero for any polynomial
f(x) of deg 2n-1 or less provided ....

* the nodes are chosen to be the zeros of the nth
Legendre polynomial P (x)

— we'll explain how the orthogonality properties of Legendre
polynomials ensure this

* notation confusion:
— Pn.1(x) is the interpolating Lagrange polynomial BUT ....
— P,(x)is the nth Legendre polynomial used to define the nodes
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Gauss-Laguerre quadrature

we’ll explain how it works with Gauss-Laguerre
first pick the nodes ...

— suppose f(x) is a polynomial of degree 2n-1

— then f*1)(€)/(n+1)! is a polynomial of degree n-1

— so let’s call this polynomial (x)

now we have

n

flry =" Li(a) () +

=0

n

E )} wia)

i=0

to compute the integral at the top of slide 51, we can
— multiply each term in this expression by e*and ....
— integrate both sides
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Gauss-Laguerre quadrature

50 n
0

fu ) =3 1w [ ni@ant fo e [H(rfrn} V(x)dr

i=0

» how to pick the x; nodes so the error termis ZER O ?
+ COOL OBSERVATION 1:

— the product [..] can be made into the Laguerre polynomial L, of
degree n by ....
— picking the nodes x; to be the n zeros of the nth Laguerre
polynomial
*+ COOL OBSERVATION 2:
— can expand the (degree n-1) polynomial y(x) in terms of Laguerre
polynomials L, to L, because ....

— the Laguerre polynomials are a basis for the space of
polynomials deg n-1 or less
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Gauss-Laguerre quadrature

the integral in the righthand side is identically zero
— by the orthogonality properties of the Laguerre polynomials
so.... the lefthand side integral is identically equal to the
first term above

DONE

— the approximation is EXACT for polynomials of deg 2n-1 or less
the same reasoning justifies the principles of Gaussian
quadrature with other polynomial types

— Gauss-Legendre

— Gauss-Chebyshev

— Gauss-Hermite
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Gauss-Laguerre quadrature

weights w; are given by

o ~ n .
w; :f e Li(z)dx = f e " [
0 0 Zoei LT

j=0.5%i

2-point values for nodes are
0.58578 64376 27, 3.41421 35623 73

with corresponding 2-point weights

0.85355 33905 93, 0.14644 66094 07
example: calculate I(1.8) where the gamma function
interpolates the integral factorial function

it = [ emepa-ig
() /D et x
for integral values I'(a) = (o - 1)!

Unit IV - Integration and differentiation 55

Example: Gauss-Laguerre quadrature

use Gauss-Laguerre quadrature with T(a) =" w22~
n =0

say I'(2)= Z w;T;
i=0

examine the n-point weights and nodes for Laguerre

— verify this sum is 1 for all n

— you can see this in the tabulated values
for non-integral o. = 1.8 use f(x) = x18-1=x08

— not a polynomial so the intearal will not be exact
with the 2-point formula  T(1.8) = w218 + wez® = 0.947566

— 6 significant figure value is 0.931384
14-point Gauss-Laguerre gives 0.931771
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Composite Gaussian quadrature

apply Gaussian quadrature to sub-panels across a larger
integration interval [a,b]

need to ....

— locate the nodes for each sub-integration

— adjust the limits of integration as necessary for each sub-interval

— e.g. convert all limits to [-1,1] if you use Gauss-Legendre
quadrature
— decide on closed vs open vs semi-open question
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Adaptive quadrature

balances efficiency and accuracy

allows a variable step size

— take into account differences in the shape of the function across
the integration panel

algorithms are available to adjust automatically

— the step size and ...

— the number of sub-panels to achieve the desired tolerance [if
possible!]

efficient because small sub-panels (=more function

evaluations) are used only where necessary

the standard modern method of numerical integration
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Matlab implementation
q = quad(fun,a,b,tol)

— uses an adaptive Simpson’s rule
q = quadl(fun,a,b,tol)

— uses a modified adaptive closed Gauss-Lobatto quadrature

— nodes selected to optimize refining the panel size later

— based on Legendre polynomials
function arguments

— fun can be defined as an inline function

— use vector expressions in fun:

e.g. f=inline(*1./(x."3 - 2*x -5)’); q = quadl(f,0,2)

— default tol = 1e-6

— also count function evaluations by [q,fcnt] = quadl(fun,a,b,tol)
these are very powerful algorithms.....!
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Introduction to numerical differentiation

nodes and weights for derivative approximation
finite difference methods

— forward, backward, and central differences
smoothing methods

— Lagrange interpolation

— Neuwton interpolation and divided differences

— cubic splines
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Numerical differentiation

Three situations may occur in numerical differentiation ....

1. The function f(x) is known in symbolic form but
— may be difficult or inconvenient to differentiate symbolically
2. Some exact function values f(x;) are tabulated
— for instance calculated by function evaluations
3. Some approximate function values f(x;) are tabulated
— for instance obtained from experimental data
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Numerical differentiation

» numerical differentiation approximates the derivative f'(c)
as a weighted sum n
ff‘:('jl = Z “‘Y,fi
i=1

— the sampled values f; = f(x;) are obtained at....
— ... nodes x; near ¢
— the weights w; depend on c and the x;

+ the exactness degree m is the largest integer that gives

an exact n
Fe)= Z w; fi
=1

for polynomials of degree <m
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Numerical differentiation

+ to be useful the weights must sum to zero
— this is true regardless of ¢ and x;

* here’s why ....
— for an exactness degree = 0 we have f(c) = 0 to be exact when
f(x) =1
— substitute in the weighted sum:
fc) = wyfy + wof, + .+ w f
= W)+ Wof(xp) + ... + wof(x,)
=W+ woel + L+ wel
Swtw, Lt w,
=0
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Difference approximations

+ the 2-point forward-difference approximation is
Fle) ~ fle+ h!,?) — fle)

» the 2-point backward-difference is
Fle) ~ fle) - ‘J;(!'— h)

* accuracy is obtained by balancing
— roundoff error as the stepsize h gets small and

— truncation error caused by the first order Taylor series
approximation used
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First-order approximation

* the first-order Taylor series approximation for f about c is
fle+h) = fle)+ fle)h+ f7()n2 2
— the last term is the second-order error
— the unknown value € is between ¢ and c+h
* we can solve for
. e+ h)— fle)
f’(r‘)=f[ ) - fle)
h
» the Taylor series for f(c-h) gives

_ Jle) = fle—h)
h

F(€)R /2

+ f(C)h/2

— the unknown value C is between c-h and ¢ now
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First-order approximation

« the forward-difference approximation will be exact at
some point between ¢ and c+h
— this is around c+h/2 if the funciton isn’t too wild

» same for the backward difference but
— the point is between c-h and ¢
— so exact around c-h/2 if the function is reasonable

» the mean value theorem explains these observations
or ...

* use geometric reasoning
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Central differences

» averaging the forward and backward differences gives

flet+h)—fle—h)

5 +"(E)n*/6

fle) =
— error is O(h2) now
— the Taylor series are second order since the O(h) error terms
cancel
« the central difference approximation is
) fle+ )= fle—h)
oy = 2 277 JA T
fie) 2
— the error term is now O(h?) ... a better choice
— the approximation is exact at some value between c-h and ct+h
— ... so around x=c if the function is well-behaved
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Using Lagrange interpolation

* given: n (not necessarily equi-spaced) nodes X;
+ to find: weights for the kth derivative approximation

FB ey = > wifi
i=1
+ use the Lagrange interpolation for f(x) with the given
nodes (Unit Ill) :
Pr1(X) = ¥4 Ly(x) + yo Ly(x) + ... + v, Ly(x)

n

with Li(z)= ][]

. Xj
k=1.k+#j

xr — I

— 1
(k)

« f(r) = pa_1(x) near cso we can expect f*(x) ~ p,(x)
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Using Lagrange interpolation

 evaluating the Lagrange polynomial derivative is easy:
p ey = L ) f ) + L @) fea) + o+ L () f ()

» so we choose the weights in the derivative approximation
fi(x) (slide 62) as

w; = LEH ()

+ in fact the converse is also true by uniqueness:

— exactness of degree n is ensured by choosing the weights as
above
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Using Newton interpolation

+ with a Newton interpolation we have
fla) = Pylr) = fler] + fley, wol(e — x1) + floer, oo, 2g](e — 2q) (2 — w2)+

ok flrrora, g (e — ) (e —we) o (= ay)

* brute force .... differentiate P, (x) to approximate f'(x)
across the interval (x4,X,,)

* locally .... use groups of points to get lower order
approximations for local regions
— can evaluate f'(x) for a given x value
— point of interest cannot lie at the upper end of the data range
— use divided difference tables for calculations

— can reverse the points to gain choice-or-order flexibility at the
upper end
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Using plain function differences

» ageneral formula for the derivative of the Newton poly at
an arbitrary point is messy
— easiest to handle specific examples as they arise
* it's possible to write a simpler general formula if ...
— the x-values are equally spaced
— the derivative f(x) is to be evaluated at one of the data values x;
* using differences we have

Fla) = (U/RIAF — AZF/2+ A%F/3 — o+ (—1)"TARF /)

— h=x-x.,and A"f;is the nth order function difference at x;
error is O(h")

— n=1is forward difference

n=2 is central difference
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Smoothing sampled data

* sampled data should be smoothed before
differentiating

— for instance to obtain velocity and acceleration from
sampled position data

— applying difference techniques directly to noisy data is
likely to produce nonsense

Three Standard Methods

1. Cubic splines
2. B-splines
3. Least-squares curve fitting
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REMEMBER.....

numerical differentiation is an inherently unstable local
process

quadrature is a global process that includes an inherent
smoothing

— positive and negative errors will tend to cancel in integration
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