
Unit IV - Integration and differentiation 1

Unit IV

Numerical Integration and Differentiation

Unit IV - Integration and differentiation 2

Numerical integration and differentiation

• quadrature

– classical formulas for equally spaced nodes

– improper integrals

– Gaussian quadrature and orthogonal polynomials

• differentiation of functions

– finite difference methods

– smoothing methods for noisy data

Unit IV - Integration and differentiation 3

Numerical integration

• construct a polynomial interpolation for the function f(x)

• this provides an easy integration to approximate the
definite integral

• this problem is actually a special case of integration
of an ordinary differential equation

– i.e. find y(b) subject to the boundary condition y(a) = 0

• direct methods for numerical integration of
functions are called quadrature

Unit IV - Integration and differentiation 4

Plan of attack

• to integrate f(x) from a to b ...

• add up values of the integrand at selected abscissas

within the range of integration

• goal: obtain an accurate value of the integral with the

smallest number of evaluations of the integrand

• as with polynomial interpolation we can choose

methods of increasingly high order but ....

• ... higher order does NOT necessarily imply higher

precision

Unit IV - Integration and differentiation 5

How?

• n abscissa points (nodes), i.e. steps along the x-axis,

identified within the integration interval (a,b)

– x1,...,xn

– x1 and xn need not coincide with a and/or b

• find low order piecewise polynomial interpolants for

f(x) on sub-intervals defined by the nodes

• each method has a basic rule (i.e. formula) and ...

– from integration of the piecewise polynomial segment

• ... a composite rule

– from combining the piecewise integrated polynomial

interpolants according to some scheme

Unit IV - Integration and differentiation 6

Truncation error

• can be evaluated by comparing numerical vs analytic

solutions for test functions

• in general can be expressed as a function of the

number of nodes

– more nodes = less truncation error...

– ... but not always

• adaptive methods

– estimates of the truncation error provide feedback on the fly

– the number of nodes can be adjusted at each step to meet

user-specified accuracy



Unit IV - Integration and differentiation 7

Options for node spacing

• Newton-Cotes methods
– family of methods based on equally-spaced nodes

– historically significant

– in practice mostly useless nowadays

– composite versions can be more useful

• Gaussian quadrature
– based on irregularly-spaced nodes defined as the zeros of

special orthogonal sets of polynomials

– different families of polynomials lead to different basic rules

– more theoretically complex and difficult

– complicated programming

– much reduced truncation error

Unit IV - Integration and differentiation 8

Newton-Cotes methods

• n nodes xi+1=x1 + ih, i=1, ...,n-1 in the integration interval (a,b)

• h is called the step size

• f has known values at the nodes fi = f(xi)

• the method is closed if f(a) and f(b) are used as nodes

• when f is not well-behaved at the endpoints

• open methods for which f(a) and f(b) are not used are
convenient

Unit IV - Integration and differentiation 9

Trapezoidal step

Unit IV - Integration and differentiation 10

Trapezoidal rule

• a piecewise linear interpolation on each sub-interval (xi,xi+1)

• integrate the first order Lagrange polynomial interpolant to get

the basic rule

• error analysis shows error is dependent on h3 times some

(unknown) value of f'' inside the interval

• two point (x1 and x2) formula

• exact for any polynomial function up to degree 1, i.e. linear

polynomial

Unit IV - Integration and differentiation 11

Simpson step

Unit IV - Integration and differentiation 12

Simpson’s rule

• a piecewise quadratic interpolation on each sub-interval (xi,xi+2)

• integrate the 2nd order Lagrange polynomial interpolant to find

the basic rule

• sub-intervals used in pairs so requires an odd number of nodes

• a three point formula exact for polynomials up to degree 2

• error is O(h5) instead of anticipated O(h4), due to a lucky

cancellation from symmetry

• note the step size 2h = sum of the weights (coefficients)



Unit IV - Integration and differentiation 13

Simpson’s 3/8 rule

• a piecewise cubic interpolation on each sub-interval (xi,xi+3)

• contrast this with what we did in constructing the cubic spline
interpolation, viz. fit cubic through pairs of points

• the basic rule is calculated by integrating the 3nd order
Lagrange polynomial interpolants

• extending requires n = 3k+1 nodes, since the sub-intervals are
used in threes

• a four point formula exact for polynomials up to degree 3 (no
luck this time)

• note the step size 3h = sum of the weights

Unit IV - Integration and differentiation 14

Bode’s rule

• a piecewise 4th order polynomial interpolation on each sub-

interval (xi,xi+4)

• the basic rule is calculated by integrating the 4th order Lagrange

polynomial interpolants

• requires n = 4k+1 nodes, since the sub-intervals are used in

fours

• a five point formula exact for polynomials up to degree 5 (lucky

cancellation again this time)

• note the step size 4h = sum of the weights

Unit IV - Integration and differentiation 15

Composite (closed) trapezoidal rule

• apply the trapezoidal rule n-1 times to the sub-intervals

• error is O[f''.(b-a)3/n2]

• usually we want to adjust n and keep (b-a) fixed, e.g. take twice

as many steps and see how the error is reduced

• so we write error is O(1/n2) and ignore the other parts

• this equation is the most important in the series, used as the

basis for subsequent more sophisticated methods

Unit IV - Integration and differentiation 16

Example: Composite trapezoidal rule

• for n = 2 sub-intervals, h = (2-1)/2 = 1/2 and you get

I1 = (1/4) [1/1 + 2/1.5 + 1/2] = 17/24 ! 0.7083

• for n = 22 = 4 sub-intervals h = 1/4 and you get

I2 = (1/8) [f(1) + 2f(5/4) + 2f(3/2) + 2f(7/4) + f(2)]

    = (1/8) [1 + 8/5 + 4/3 + 8/7 + 1/2] ! 0.6970

• for n = 23 = 8 sub-intervals h = 1/16 and you get

I3 = (1/16) [f(1) + 2f(9/8) + 2f(5/4) + 2f(11/8)+ 2f(3/2)

       + 2f(13/8) + 2f(7/4) + 2f(15/8) + f(2)] ! 0.6941...

• the exact value of the integral is ln(2) ! 0.693147...

O(n2)

Unit IV - Integration and differentiation 17

Composite (closed) Simpson’s rule

• 4th order method, i.e. error = O(1/n4) as for Simpson’s rule

• derived by applying Simpson’s rule to sub-intervals sequentially

• requires an odd number of nodes, so even number of sub-

intervals

• it’s also possible to use over-lapped Simpson steps, but requires

special care at the ends....

Unit IV - Integration and differentiation 18

Composite (closed) third order method

• error = O(1/n3)

• this is derived by averaging two shifted applications of the

composite Simpson’s rule over (a,b)

• a single trapezoidal step is included to fill in opposite ends

• the two trapezoidal steps reduce the order to n3 instead of the

expected n4



Unit IV - Integration and differentiation 19

Example: Composite O(n3) rule

• for n = 2 sub-intervals, h = (2-1)/2 = 1/2 and you get

I1 = (1/2) [(5/12)(1/1) + (13/12)(1/1.5) + (5/12)(1/2)]

   ! 0.6943

• for n = 4 sub-intervals h = 1/4 and you get

I2 = (1/4) [(5/12)f(1) + (13/12)f(5/4) + f(3/2) + (13/12)f(7/4) + 5/12)f(2)]

    = (1/4) [(5/12)(1/1) + (13/12)(1/1.25) + 1/1.5 + (13/12)(1/1.75)

          + (5/12)(1/2)] ! 0.6943

• the exact value of the integral is ln(2) ! 0.693147...

• compare convergence of this third order method to that of the
second order trapezoidal rule

Unit IV - Integration and differentiation 20

Improper integrals

• one of the following may apply....
– the integrand has a finite limit at either of the finite endpoints,

but cannot be evaluated (e.g. sin x/x at x=0)

– one of the limits is " or -"

– there is an integrable singularity at either limit (e.g. x-1/2 at
x=0)

– there is an integrable singularity at some known place inside
the interval of integration

– there is an integrable singularity at some unknown place
inside the interval of integration

• we need to be able to handle any of these cases in
numerical integration of functions

Unit IV - Integration and differentiation 21

Improper integrals

• first four cases are resolvable with basic methods

• something like the composite trapezoid rule is useful,
because....

• to handle the improper aspects we need to use an
open formula
– neither f(a) nor f(b) need to be evaluated

• composite midpoint method is an open alternative:

– cannot double the number of steps and retain past work, but
you can triple the steps

Unit IV - Integration and differentiation 22

Infinite limits

• change variables to transform an infinite integration
interval to a finite one

• example:

– works if b = " and a>0, or a = -" and b<0

– if say b = " and a<0 split into two separate integrals

• an clever integration routine can make the
transformation for you when one of the required limits
is ‘very large’

Unit IV - Integration and differentiation 23

Integrable singularities

• a transformation can remove an integrable singularity
when f(a) or f(b) is infinite

• example:
–  an inverse square root singularity at a can be fixed by using

t = #x-a ..... so x = t2+a and dx = 2tdt

• at the lower limit we would have

• numerical methods cannot fix ill-posed problems with
integrals that are impossible

Unit IV - Integration and differentiation 24

Newton-Cotes formulas re-visited

• pn-1(x) is the Lagrange polynomial interpolation for
f(x) on the interval (a,b)

• all Newton-Cotes formulas can be considered in the
following view:



Unit IV - Integration and differentiation 25

Weights and nodes

• the xj are nodes a $ xj $ b

• the wj are called weights
– obtained by integrating the jth Lagrange interpolating

polynomial for f(x) on (a,b):

Unit IV - Integration and differentiation 26

Weights and nodes

• Newton-Cotes rule with n nodes cannot give
precision greater than O(n-1)
– exact for polynomials of degree n-1 or less

• we can improve this situation without increasing the
number of nodes ....

• ... by providing more degrees of freedom in the fit

• Gaussian quadrature chooses the nodes carefully to
have special properties with respect to f(x)

Unit IV - Integration and differentiation 27

Gaussian quadrature

• both weights and nodes are freely chosen for best
precision
– twice as many degrees of freedom

– nodes will not be equally spaced in general

• how do we ...
– optimize the node positions?

and ...

– find the corresponding weights?

Unit IV - Integration and differentiation 28

Two versions of Gaussian quadrature

• given function w(x) and integer n we want to find
weights wj and nodes xj so that the approximation

is exact if f(x) is a polynomial

• if we write g(x) = w(x)f(x) and vj = wj/w(xj) we get an
alternative form of the Gaussian quadrature formula

Unit IV - Integration and differentiation 29

The easy way to nodes and weights

• lookup tables
– nodes and weights are available for given weight functions w(x)

and values of n

• can be used without understanding the theory but ....
– the theory is important for its intrinsic value so you should be

aware of the basics

– custom-designed weight functions are sometimes needed to
solve a specific problem

– you have to know enough to know which version of the
Gaussian quadrature formula (slide 28) to use

• compromise: we give some results and outline the
theoretical background (so dive in .... )

Unit IV - Integration and differentiation 30

Gaussian quadrature

• how exact can the approximate integral be with n nodes?
– to a polynomial of degree n-1 or less with Newton-Cotes

formulas

– to a polynomial of degree 2n-1 or less for movable nodes

• compared to using fixed nodes Gaussian quadrature
gives
– an order twice as large for the same number of function

evaluations

• that’s a LOT of room to improve precision but .....



Unit IV - Integration and differentiation 31

Gaussian quadrature

• .... higher order does not necessarily mean better

accuracy

– need a smooth function to benefit from Gaussian quadrature

– it should be well approximated by a polynomial

• for craggy functions .... you do just a well or better with
the composite trapezoid rule

• an additional benefit of Gaussian quadrature:
– the approximation is exact for functions which are products of

a given w(x) and a polynomial, not just plain polynomials

• to understand the basis for all this we need to visit the
world of orthogonal polynomials .....

Unit IV - Integration and differentiation 32

Digression: Orthogonal functions

• recall .... the concept of inner product space from linear
algebra

• an inner product with weight function w(x) can be
defined in a function space:

• the result is a number, not a function, of course

• on the interval [a,b] two functions f and g are ....
–  orthogonal if !f|g" = 0 (and f # g)

–  normalized if !f|f" = ||f||2 = 1

Unit IV - Integration and differentiation 33

• an orthonormal set of functions is mutually orthogonal
and normalized (just like an orthonormal basis)

• example: {1, x} are orthogonal on the interval [-1,1] with
either of the weight functions:
– w(x) = 1

– w(x) = #1-x2

• example: {cos kx}, {sin kx} k=1,...,n are orthogonal sets
of functions on [0,$]

• the mononomials {1, x, x2,x3, ....} are NOT an orthogonal
set, but ....

Digression: Orthogonal functions

Unit IV - Integration and differentiation 34

• .... important sets of polynomials pj(x), j = 0,1,2,....
can be defined on an interval (a,b) so that
– there is exactly one polynomial of each degree

– they are mutually orthogonal with respect to a given weight
function w(x)

• after a heavy dose of linear algebra we can obtain
recursive definitions for these orthogonal
polynomials ....

Digression: Orthogonal functions

Unit IV - Integration and differentiation 35

Digression: Orthogonal functions

Unit IV - Integration and differentiation 36

• the polynomials are monic

– coefficient is one for the highest degree term xj

• they can be normalized in the usual way
– divide each pj by its 2-norm !pj|pj "

1/2

• each polynomial pj(x) has j distinct (real) roots in the

interval (a,b)

– these j roots of pj(x) interlace with the j-1 roots of pj-1

– exactly one root of pj lies between any two adjacent roots of pj-1

• root-interlacing is very handy for finding all roots of pj(x)

– find the one root of p1

– continually bracket the roots for each higher j

– apply something like Newton’s method to locate the roots

Digression: Orthogonal functions



Unit IV - Integration and differentiation 37

• but .... why would anyone want to find all the roots of an
orthogonal polynomial anyway?

• because the roots of orthogonal polynomials are the key
to Gaussian quadrature 

 read on !

Digression: Orthogonal functions

Unit IV - Integration and differentiation 38

How to get the nodes?

• in an n-point Gaussian quadrature on the interval (a,b)

with weight function w(x):

the nodes are chosen to be the n roots of

the orthogonal polynomial pj(x) with the same

weight function and interval

• this is a fundamental theorem and the starting point for

myriad different pathways in the subject

– calculations tend to be quite complicated

• once you have the nodes you need to calculate the

corresponding weights wj .....

Unit IV - Integration and differentiation 39

How to get the weights?

• simplest approach: substitute each pj(x) for f(x) in the
integral approximation (slide 28)
– the result should be exact

– (witchcraft) slip a p0(x) inside the integral without changing it
since p0(x) = 1 (a constant)

– the thing evaluates to zero for j=1,2,... because all the other
polynomials are orthogonal to p0

• you get the system of equations

Unit IV - Integration and differentiation 40

How to get the weights?

• solve to get the weights {w1,..., wn}

• it turns out that they give an integral approximation exact

for polynomials up to the next n-1 degree as well

• so the quadrature formula is exact for polynomials up to

degree 2n-1 (as anticipated)

• other ways to get the weights include .....

– use lookup tables for known weight functions

– study the theory in depth and develop the most well-known and

useful cases [an important study for engineers]

– use the integral formula (slide 25) with the Lagrange interpolating

polynomials for f(x)

Unit IV - Integration and differentiation 41

Taking stock

1. Generate the orthogonal polynomials {p0, ..., pn}
– i.e. evaluate coefficients aj and bj in the formulas on slide 39

2. Find the zeros of pn(x) .... the NODES

3. Calculate the associated wj .... the WEIGHTS

• for classical weight functions ....
– the orthogonal polynomials are known so the work is simplified

– but still somewhat involved

• for non-classical weight functions ....
– the non-trivial process above must be followed

• three steps are used to develop a Gaussian quadrature
formula for a given w(x) ....

Unit IV - Integration and differentiation 42

Legendre polynomials

• the simplest case: w(x) = 1 and interval (-1,1)

• the Legendre polynomials are generated by

• the first few Legendre polynomials are:
P0(x) = 1

P1(x) = x

P2(x) = (3x2 - 1)/2

P3(x) = (5x3 - 3x)/2

P4(x) = (35x4 - 30x2 + 3)/8

• these lead to Gauss-Legendre quadrature.....



Unit IV - Integration and differentiation 43

2-point Gauss-Legendre quadrature

• nodes are the zeros of P2(x)
– the solutions of 3x2-1 = 0

– x1 = -1/#3 and x2 = 1/#3

• weights are obtained from the Lagrange interpolating
polynomial formula on slide 25

Unit IV - Integration and differentiation 44

Example: 2-point Gauss-Legendre quadrature

• 2-point Gauss Legendre quadrature should give the
exact answer for this integral (cubic, 2n-1 = 3)

• as expected the answer is exact to sig. figures given

• consider a more involved example .....

Unit IV - Integration and differentiation 45

5-point Gauss-Legendre quadrature

• nodes are the zeros of P5(x)

• these can be found numerically, or by lookup tables:
0, ±0.33998 10435 84856, ±0.90617 663115 94053

• ditto for the corresponding weights
0.56888 88888 88889, 0.47862 86704 99366,

 0.23692 68850 56189

• use the 5-point formula to estimate ln 2 by evaluating

• a problem here .... integration is over [1,2] so Gauss-
Legendre is not applicable directly

Unit IV - Integration and differentiation 46

Adjusting integration limits

• to apply Gauss-Legendre quadrature over [a,b] not [-1,1]

• define a new function using the transformation

z = (2x - (a+b)) / (b - a)

• x = a % z = -1 and x = b % z = 1 as required

• new function is g(z) = f(x) = f((b - a)z + (a + b)/2)

• integral is converted to a standard [-1,1] integral of form
F(z) dz

• nodes zi and weights wi obtained from tabulated values
are used in the expansion with F(z)

• in the 5-point example we have:

z = (2x - (2 + 1)) / (2 - 1) = 2x - 3

g(z) = 2 / (z + 3)

Unit IV - Integration and differentiation 47

Example: 5-point Gauss-Legendre quadrature

• applying the transformation gives

• so F(z) = 1 / (z+3)

• now apply the 5-point Gauss Legendre quadrature
formula, using the tabulated nodes and weights with F(z)

• the answer is accurate to 6 significant figures

Unit IV - Integration and differentiation 48

Another example

• f(x) = exp(-x2), a = 0, b = 2

• transformation z = (2x - (2+0)) / (2-0) = x-1 or x = z+1

• g(z) = f(x) = exp(-(z+1)2)

• f(x)dx = g(z)dz, so F(z) = g(z) since dz = dx

• apply 2-point Gauss-Legendre quadrature



Unit IV - Integration and differentiation 49

Laguerre polynomials

• take w(x) = e-x and interval [0,"]

• the Laguerre polynomials are generated by

• the first few Laguerre polynomials are:

• this leads to Gauss-Laguerre quadrature.....

Unit IV - Integration and differentiation 50

Gauss-Laguerre quadrature

• use to evaluate integrals of the above type

• nodes xi are the roots of the nth Laguerre polynomial

• apply the Lagrange interpolation formula

– this is valid for some 0<&<"

– the error term Rn is as given [not derived here]

• at this point the nodes xi have yet to be defined....

Unit IV - Integration and differentiation 51

Why does Gaussian quadrature work?

• the Gauss-Legendre approximation is
– exact for polynomials of deg n-1 or less [for sure] but ....

– the error term above can also be made zero for any polynomial
f(x) of deg 2n-1 or less provided ....

• the nodes are chosen to be the zeros of the nth
Legendre polynomial Pn(x)
– we’ll explain how the orthogonality properties of Legendre

polynomials ensure this

• notation confusion:
– pn-1(x) is the interpolating Lagrange polynomial BUT ....

– Pn(x) is the nth Legendre polynomial used to define the nodes

Unit IV - Integration and differentiation 52

Gauss-Laguerre quadrature

• we’ll explain how it works with Gauss-Laguerre

• first pick the nodes ...
– suppose f(x) is a polynomial of degree 2n-1

– then f(n+1)(&)/(n+1)! is a polynomial of degree n-1

– so let’s call this polynomial '(x)

• now we have

• to compute the integral at the top of slide 51, we can
– multiply each term in this expression by e-x and ....

– integrate both sides

Unit IV - Integration and differentiation 53

Gauss-Laguerre quadrature

• how to pick the xi nodes so the error term is Z E R O ?

• COOL OBSERVATION 1:
– the product [..] can be made into the Laguerre polynomial Ln of

degree n by ....

– picking the nodes xi to be the n zeros of the nth Laguerre
polynomial

• COOL OBSERVATION 2:
– can expand the (degree n-1) polynomial '(x) in terms of Laguerre

polynomials L1 to Ln-1 because ....

– the Laguerre polynomials are a basis for the space of
polynomials deg n-1 or less

Unit IV - Integration and differentiation 54

Gauss-Laguerre quadrature

• the integral in the righthand side is identically zero
– by the orthogonality properties of the Laguerre polynomials

• so.... the lefthand side integral is identically equal to the
first term above

• D O N E
– the approximation is EXACT for polynomials of deg 2n-1 or less

• the same reasoning justifies the principles of Gaussian
quadrature with other polynomial types
– Gauss-Legendre

– Gauss-Chebyshev

– Gauss-Hermite

– . . . .



Unit IV - Integration and differentiation 55

Gauss-Laguerre quadrature

• weights wi are given by

• 2-point values for nodes are
0.58578 64376 27, 3.41421 35623 73

• with corresponding 2-point weights
0.85355 33905 93, 0.14644 66094 07

• example: calculate ((1.8) where the gamma function
interpolates the integral factorial function

• for integral values (()) = () - 1)!

Unit IV - Integration and differentiation 56

Example: Gauss-Laguerre quadrature

• use Gauss-Laguerre quadrature with

• say

• examine the n-point weights and nodes for Laguerre
– verify this sum is 1 for all n

– you can see this in the tabulated values

• for non-integral ) = 1.8 use f(x) = x1.8-1 = x0.8

– not a polynomial so the integral will not be exact

• with the 2-point formula

– 6 significant figure value is 0.931384

• 14-point Gauss-Laguerre gives 0.931771

Unit IV - Integration and differentiation 57

Composite Gaussian quadrature

• apply Gaussian quadrature to sub-panels across a larger
integration interval [a,b]

• need to ....
– locate the nodes for each sub-integration

– adjust the limits of integration as necessary for each sub-interval

– e.g. convert all limits to [-1,1] if you use Gauss-Legendre
quadrature

– decide on closed vs open vs semi-open question

Unit IV - Integration and differentiation 58

Adaptive quadrature

• balances efficiency and accuracy

• allows a variable step size
– take into account differences in the shape of the function across

the integration panel

• algorithms are available to adjust automatically
– the step size and ...

– the number of sub-panels to achieve the desired tolerance [if
possible!]

• efficient because small sub-panels (=more function
evaluations) are used only where necessary

• the standard modern method of numerical integration

Unit IV - Integration and differentiation 59

Matlab implementation

• q = quad(fun,a,b,tol)
– uses an adaptive Simpson’s rule

• q = quadl(fun,a,b,tol)
– uses a modified adaptive closed Gauss-Lobatto quadrature

– nodes selected to optimize refining the panel size later

– based on Legendre polynomials

• function arguments
– fun can be defined as an inline function

– use vector expressions in fun:

e.g. f = inline(‘1./(x.^3 - 2*x -5)’); q = quadl(f,0,2)

– default tol = 1e-6

– also count function evaluations by [q,fcnt] = quadl(fun,a,b,tol)

• these are very powerful algorithms.....!

Unit IV - Integration and differentiation 60

Introduction to numerical differentiation

• nodes and weights for derivative approximation

• finite difference methods
– forward, backward, and central differences

• smoothing methods
– Lagrange interpolation

– Newton interpolation and divided differences

– cubic splines



Unit IV - Integration and differentiation 61

Numerical differentiation

Three situations may occur in numerical differentiation ....

1. The function f(x) is known in symbolic form but
– may be difficult or inconvenient to differentiate symbolically

2. Some exact function values f(xi) are tabulated
– for instance calculated by function evaluations

3. Some approximate function values f(xi) are tabulated
– for instance obtained from experimental data

Unit IV - Integration and differentiation 62

Numerical differentiation

• numerical differentiation approximates the derivative f'(c)
as a weighted sum

–  the sampled values fi = f(xi) are obtained at....

–  ... nodes xi near c

–  the weights wi depend on c and the xi

• the exactness degree m is the largest integer that gives
an exact

for polynomials of degree $ m

Unit IV - Integration and differentiation 63

Numerical differentiation

• to be useful the weights must sum to zero
– this is true regardless of c and xi

• here’s why ....
– for an exactness degree % 0 we have f'(c) = 0 to be exact when

f(x) = 1

– substitute in the weighted sum:

      f'(c) = w1f1 + w2f2 + ... + wnfn
= w1f(x1)+ w2f(x2) + ... + wnf(xn)

= w1•1+ w2•1 + ... + wn•1

= w1+ w2 + ... + wn

= 0

Unit IV - Integration and differentiation 64

Difference approximations

• the 2-point forward-difference approximation is

• the 2-point backward-difference is

• accuracy is obtained by balancing
– roundoff error as the stepsize h gets small and

– truncation error caused by the first order Taylor series
approximation used

Unit IV - Integration and differentiation 65

First-order approximation

• the first-order Taylor series approximation for f about c is

– the last term is the second-order error

– the unknown value & is between c and c+h

• we can solve for

• the Taylor series for f(c-h) gives

– the unknown value * is between c-h and c now

Unit IV - Integration and differentiation 66

First-order approximation

• the forward-difference approximation will be exact at
some point between c and c+h
– this is around c+h/2 if the funciton isn’t too wild

• same for the backward difference but
– the point is between c-h and c

– so exact around c-h/2 if the function is reasonable

• the mean value theorem explains these observations

or ...

• use geometric reasoning



Unit IV - Integration and differentiation 67

Central differences

• averaging the forward and backward differences gives

– error is O(h2) now

– the Taylor series are second order since the O(h) error terms
cancel

• the central difference approximation is

– the error term is now O(h2) .... a better choice

– the approximation is exact at some value between c-h and c+h

– ... so around x=c if the function is well-behaved

Unit IV - Integration and differentiation 68

Using Lagrange interpolation

• given: n (not necessarily equi-spaced) nodes xi

• to find: weights for the kth derivative approximation

• use the Lagrange interpolation for f(x) with the given
nodes (Unit III) :

pn-1(x) = y1 L1(x) + y2 L2(x) + ... + yn Ln(x)

with

•       near c so we can expect

Unit IV - Integration and differentiation 69

Using Lagrange interpolation

• evaluating the Lagrange polynomial derivative is easy:

• so we choose the weights in the derivative approximation
f'(x) (slide 62) as

• in fact the converse is also true by uniqueness: 
– exactness of degree n is ensured by choosing the weights as

above

Unit IV - Integration and differentiation 70

Using Newton interpolation

• with a Newton interpolation we have

• brute force .... differentiate Pn(x) to approximate f'(x)
across the interval (x1,xn)

• locally .... use groups of points to get lower order
approximations for local regions
– can evaluate f'(x) for a given x value

– point of interest cannot lie at the upper end of the data range

– use divided difference tables for calculations

– can reverse the points to gain choice-or-order flexibility at the
upper end

Unit IV - Integration and differentiation 71

Using plain function differences

• a general formula for the derivative of the Newton poly at
an arbitrary point is messy
– easiest to handle specific examples as they arise

• it’s possible to write a simpler general formula if ....
– the x-values are equally spaced

– the derivative f(x) is to be evaluated at one of the data values xi

• using differences we have

– h = x - xi-1 and +nfi is the nth order function difference at xi

– error is O(hn)

– n=1 is forward difference

– n=2 is central difference

Unit IV - Integration and differentiation 72

Smoothing sampled data

• sampled data should be smoothed before
differentiating
– for instance to obtain velocity and acceleration from

sampled position data

– applying difference techniques directly to noisy data is
likely to produce nonsense

Three Standard Methods

1. Cubic splines

2. B-splines

3. Least-squares curve fitting



Unit IV - Integration and differentiation 73

R E M E M B E R ......

• numerical differentiation is an inherently unstable local
process

• quadrature is a global process that includes an inherent
smoothing
– positive and negative errors will tend to cancel in integration


